APPLICATION OF COMPARISON THEOREMS TO THE
THEORY OF HEAT CONDUCTION

I. M. Ametov and Yu. 8. Daniélyan UDC 536.24.02

Upperand lower estimates are established for the solutions to certain boundary-value prob-
lems in the theory of heat conduction.

As is well known, comparison theorems yield "from below"and "fromabove" estimates in the solution
of differential equations. With sufficiently accurate estimates based on comparison theorems, it is possible
to evaluate certain approximate methods of solution.

In the technical literature are given comparison theorems for ordinary differential equations, whether
linear [1] or nonlinear {2]. In the case of self-adjoint and limit self-adjoint solutions to parabolic equations,
one can establish estimates for the solution on the basis of comparison theorems for ordinary differential
equations. The comparison theorem proved in [3, 4] applies to parabolic equations with any initial and
boundary conditions. The comparison theorem proved in [5] applies to a specific system of the parabolic
kind. The use of comparison theorems for estimating the solutions to self-adjoint problems has been
dealt with in [6, 7]. In [5-6] comparison theorems are used for estimating the solutions as well as for
analyzing the accuracy of the linearization method and of the method of successive steady states.

Here the authors will show on the specific examples how the Westphal theorem can be applied to the
theory of heat conduction.

1. We will estimate the solution to the problem of heat propagation through a semiinfinitely large
medium with a temperature~dependent thermal conductivity varying along the space coordinate:

TO, =T, T(o, y=Ty Tix, 0) =T, 2)
We introduce the function u = T° which represents the solution to the following problem:
ou -0 ou
-é—[—:azi/ug(x“—é;), (3)
u@, H="Ts=u; ufoo,t)= T3 =uy; ulx, 0) = u, %)

We assume that 8T/6t = 0 (when Tg < Ty), then du/dt = 0,

We next consider the functions uy and u, which satisfy respectively the following equations:
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and conditions {(4), Obviously, the following inequalities
Ouy

— d Oy
sl Vu — | "),
ot V"ax( 6x>

-~ <a2V/‘Z§;(xa auz),

hold true.
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As a consequence of the Westphal theorem, it follows from (6) that
u, <u < ug (N

The solutions to Eq. (5) under conditions (4) are
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By virtue of (7), for the thermal fluxes at x = 0 we have the estimate
9 <4< Gy

The ratio ¥ = q;/q; was calculated for o = 1/2.
For a = 1.2, 1.5, and 2.0 we have obtained y = 1.07, 1.18, and 1.29 respectively.

2. We will next consider the problem of heat propagation in a two-layer plate. The heat transfer
between layers is assumed to obey Newton's Law. The heat propagation process is described by the follow-
ing system of equations:

oT. T,
o =4 e =Ty,
8)
oT., 0T
atz = az axzz - a2 (TZ - Tl)’

where Ty and T, are the temperatures of the respective layers. The initial and the boundary conditions
are

T,0,=0; Ty(x, 0)=0; T,(l; t) = I; (9)
T,0,) =0; Ty(x, 0)=0; To(l, )= 1. (10)
We assume the following inequalities:
0T, <, 0T, K1
Let functions Tyy and Ty, represent respectively the solutions to the equations
Ty o 0Ty,

ot 1 g %
(11)
T,  , Ty
o % o

and satisfy conditions (9). For functions Ty; and Ty, one can write inequalities of the (6) kind, wherefrom
the comparison theorem yields

Tiw KTy < Ty (12)
The solutions to problems (9)-(11) are
N o 2 (— 1)+
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u=s+ E { atndk? [ nk

_ ana2 ] exp (- afnzkzt)} sin stkx;
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where

4oy
oy, = TR
0 k=2n.

kR =2n41,

For the thermal fluxes at x = 0 we have, by virtue of (9) and (12), the estimate
G2 < ¢ < gy
Calculations yield

= max —AL ] +OA5»—OL—‘-2—~.
L ai

The solution for T, is estimated analogously.

3. We will next estimate the solution to the following problem:

T 2o )
Ox

ot ox (13)
TO ty=Ty; T(; =1 T 0)=1 (14)
T
As before, we introduce a function u = Xa(y) dy representing the solution to the problem
i
ou o%u
; =a(T)—5}2— , (15)
TC
u@ = [a@dy=u; u(l, =0, ulx 0)=0. (16)

i
Let functions uy and u, satisfy conditions (16) and represent respectively the solutions to equations

Ou, u, Puy du, u, 0%,
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Applying the Westphal theorem, we obtain

Uy <1< 1y (18)

Solutions uy and u, are well known [10]:

u; =ty (l — x) — 2 E L sin (swnx) exp (— 7Pra.f),
Tt n
n=1
i=1, 2
For the thermal fluxes at x = 0 we have from (18) and (16)
aT
0x)

The values of the quantity v = max lqq(0, t)/q,(0, t)! at values of & = a,/ay = 2.0, 1.6, 1.4, 1.2, 1.1,
and 1,05 are 1.35, 1.27, 1.19, 1,10, 1.05, and 1.02 respectively.

7.0, )<L al < 4,(0, 9.

4, At this point it will be shown how to obtain refined estimates of solutions by successive applications
of the comparison theorem.

Let it be required to estimate the solution to the following problem:

or J oT
s = | (1 +0.57)——
ot ax[(+ )axJ’ 19)
T@O, 8 =0; T{oo, §=1; T{x, 0) = 1. 29
We introduce the functionu = (1 + 0.5’.[‘)>2 representing the solution to the problem
du — Pu

— . 21
ot Vu P o
w0, ) = 1; u(oo, §) =225 u(x, 0) = 2.25. (22)
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In order to arrive at an approximation, we seek functions u; and u, which satisfy conditions (22) and equa-
tions
ou, Pu, Ou,
= ; =15 . 23
ot Ox* ot 0x? #3)
According to the comparison theorem, uy; = u = u;. Thermal fluxes corresponding to solutions uy
and u, are proportional:

u,

atx=0

0.7 0.57
qy ~ VZ" s G~ V‘t‘ ¢ (24)

In order to refine these estimates, it is necessary to use solutions u; and v,. In order to refine the
lower estimate, for example, one must use wy. For this, one seeks the function u; which represents the
solution to the problem

Ody 1= a?.”a .
el a® '
us (0, 1) = 1; ug(o0, ) = 2.25; u,y(x, 0) = 2.25,

Obviously, by virtue of (21) and the comparison theorem, the following inequalities

. u ou — 6
Vul Ox? ’ 2 V u2

hold true. For this reason, by applymg the comparison theorem again, one may find that uy = u; = u. For
the thermal flux at x = 0 we obtain the estimate:

]

G2 < G5 < G

Numerical computations show that g3 ~ 0.61/Vt, i.e., the lower estimate has been refined. The
upper estimate is refined by an analogous procedure.

5. At this point we will establish estimates for solutions to boundary-value problems in the theory of
heat conduction where the maximum-value principle is not satisfied. In such a situation one can obtain a
priori estimates of solutions which, however, are rather rough and unsuitable for refinement.

For instance, let the temperature distribution in an infinitely large medium with a temperature-de-
pendent thermal conductivity and with a continuous heat source be

or a o or
—_ = —_ b kx),
ot 6x(’T ox )+ exp (= &) (25)
oT
TO, 6)y=Ty; T 0 =Ty o (o0, £) = 0. (26)

We assume that 8T/8t = 0 (for this we let Ty > Tg). We introduce the function u = T? representing
the solution to the problem:

—_— = a2]/u “ oo Vu exp (— kx), 27

u@©, ) =T: =uy u(x, 0) = Tt = uy; Fu—(oo, H=0. (28)
x
We assume that function u(x, t) is bounded, denoting its as yet unknown upper and lower limits (not neces-
sarily exact) by up,,. and uy, i, respectively:
g < 0 < Ugage (29)

We also introduce the functions uy and u, which respectively satisfy equations

; — A
%, _ oy 1 1 9DV Uy €xp (— k) ,
6u2 2 V_ a Uy % E
5 = @ Vit + 20V Uy €XP (— x)
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and conditions (28). Obviously, the following inequalities
— Pu — ou
a* 14 Upax —a;zz— - 20 Vumm exp (-—- kx) < ——a‘t-
o — ,
= 4 2bY U €XP (— k) ,

hold true and thus, on the basis of Westphal's comparison theory, uy; = u = u,.

. 2b
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An analysis of functions

(31)

2b "
max
o2b? V . exp (— kx),

will easily establish the validity of the following inequalities:

min (uo, Uy 2 ]/ Umin | <o,
a2k2 umax
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From (31) we obtain the following estimates for w; and uy:
4, > min (uﬂ, u, +—2,—b— ]/ Uiy ) _ 2 ‘/ Umin |
R Upax a*k? Uppax

9 i

—max
252
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Consequently, for the original function u we have the following estimates

2 . 2b
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Now uy,, . and u,,;, are determined from the system of equations

min
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The exact solution to problem (30), (28) is well known [8]:
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'
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where

ml,zag.V”'max’ My = & Vitlgyin, 1y =20 Vit 1y = 2b V Ugay ;
9 4
erfc(y) =1 — = g exp (— E?) dE.
Vi,

The ratio of estimates for the thermal flux at x = O is
g
P
{— B Au—-n, [FV wumgt (1 + exp (Bmyt) erfc (kY myt)) — 21} myV iy
{—Rmghu —ny [k amgt (1 + exp (Bmyf) erfe (Y my)) — 21} my Vimy

o =




with

Au = uy—y. For Tg/T,= 2.0, 1.8, 1.6, 1.2, 1.1, and 1.05, witha?= 10" m?-sec™¢C)~, b= 10"6C

sec”}, and k= 900 m~!, the values of a are 0.5, 0.55, 0.66, 0.83, 0.91, and 0.95 respectively.
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NOTATION

is the temperature;

is the thermal diffusivity;

is the thermal flux;

ig the heat transfer coefficient.
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